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SUMMARY

In the present study, we treat the stochastic homogeneous Gompertz diffusion process (SHGDP) by the
approach of the Kolmogorov equation. Firstly, using a transformation in diffusion processes, we show that
the probability transition density function of this process has a lognormal time-dependent distribution,
from which the trend and conditional trend functions and the stationary distribution are obtained. Second,
the maximum likelihood approach is adapted to the problem of parameters estimation in the drift and the
diffusion coefficient using discrete sampling of the process, then the approximated asymptotic confidence
intervals of the parameter are obtained. Later, we obtain the corresponding inference of the stochastic
homogeneous lognormal diffusion process as limit from the inference of SHGDP when the deceleration
factor tends to zero. A statistical methodology, based on the above results, is proposed for trend analysis.
Such a methodology is applied to modelling and forecasting vehicle stocks. Finally, an application is
given to illustrate the methodology presented using real data, concretely the total vehicle stocks in Spain.
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1. INTRODUCTION. BACKGROUND AND STUDY AIMS

1.1. Controlling the emission of greenhouse gases and their effect on climate change: challenges
facing the car industry

Studying the past, present and future stock of motor vehicles by vehicle types (cars, goods vehicles,
motorcycles, etc.), fuel used (petrol, diesel, biofuels), motor size, CO2 emissions, age, etc., in
relation to specific geopolitical areas is a complex, significant task facing society today. It has impli-
cations, for example, for the emission of greenhouse gases (especially CO2), for the demand for oil
by-products and for the planning of communications and services networks, among other aspects.

In particular, there is an increasingly evident need to make such a study concerning the manu-
facture of all kinds of vehicles, as it is a matter of urgency to achieve models that could help
reduce the effects of CO2 emissions and thus alleviate the global problem of climate change.

An important example of this situation is the case of the EU. In February 2007, the European
Commission approved a strategy aimed at producing a significant reduction in CO2 emissions
by cars in the EU by the year 2012, when the mean level of CO2 emissions must be 120 g per
km travelled, for all new cars driven within the EU, irrespective of their country of manufacture
(some large companies manufacture cars in countries that have not signed the Kyoto protocol).
This measure will have a very notable impact on the automobile industry in the next few years.
At present, average levels of CO2 emission are 160 g per km travelled.

The EU intends to give legal force to this strategy by the year 2008, in the light of the
successive failures by European industry to observe the voluntary undertakings made; in 1998,
for example, companies pledged to reduce average emissions to 140 g/km by 2008, a goal that
will not be achieved.

The restructuring of European automobile industries, among others, to meet standards that take
environmental considerations into account, has important repercussions for employment and for the
economic sector in general. At the ‘European Car Industry Restructuring Forum’ (Brussels, October
2007), it was decided to create a European Observatory to monitor the effects of this restructuring
on the 12 million workers in the car manufacturing industry (2 million directly employed and 10
million indirect workers), a reform that is intended to achieve ‘socially responsible’ restructuring.
This sector currently accounts for 3% of the gross domestic product (GDP) of the entire EU and
4% (some 60 000 million euros) of the total export value of the goods manufactured there.

In coming years, it will also be necessary to take into account the burgeoning use of biofuels
(biodiesel and bioethanol) as an alternative source of energy of particular importance to the
worldwide sector of land transport; this will have knock-on repercussions of a technical nature
and in other fields related to car manufacture. The U.S.A. recently signed agreements with Brazil
to guarantee energy supplies, and the EU has set targets for 2010 and 2020 that 6% and 20%,
respectively, of automotive fuel should be obtained from biodiesel.

In the last few decades, many studies have been made, using deterministic models, statistical-
econometric models and, to a lesser degree, stochastic models, related to the stock of vehicles
in certain geopolitical areas (countries, specific urban zones, the EU, etc.). For example, studies
on the demand for fuels (petrol), by means of linear translog models, statistically adjusted, with
a predictive capacity in terms of the evolution of regressors such as income, prices and car
characteristics. One such technique, which is widely utilized, is Archibald and Gillingham’s petrol
demand model [1], which contains mixed terms that model interactions between regressors (see,
for example, Kayser [2]). Many studies have also been carried out to relate the total stock of
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vehicles and its growth pattern to policies such as technological control measures and territorial
management. One such study was applied to the case of the Netherlands (see Priemus [3], Sbayti
et al. [4]).

In addition, studies have been made on CO2 emissions produced by the transport sector and the
contribution of these to total greenhouse gas emissions in certain geographic areas. For example,
Gutiérrez et al. [5] analysed the case of Spain, which is a paradigmatic example of a violation
of the targets set out in the Kyoto Protocol (1992), see Gutiérrez et al. [6]. This study provides
comparative data for the transport sector, with respect to the emissions of greenhouse gases, in
the U.S.A., the EU and Spain, and models the evolution of these emissions in Spain. The above
studies make use of stochastic models to model the effects of the current stock of vehicles within
given geopolitical areas, and utilize various types of stochastic diffusion processes (Gompertz,
CIR, logistic, Rayleigh, etc.). Technically speaking, the total stock of vehicles is considered an
exogenous factor, or regressor, in the stochastic modelling of the evolution of other dynamic
variables.

Many other studies published in recent years have considered CO2 emissions, in various contexts.
For example, Paravantis and Georgakellos [7] made an econometric analysis of emissions by
passenger cars and buses in Greece. This study, moreover, provided an overview of diverse technical
approaches, including those based on sigmoid-type deterministic growth curves (in particular,
logistic and Gompertz curves), used to analyse the growth of total vehicle stocks.

In this context, however, few studies have addressed (even partially), using stochastic models,
the question of modelling the past evolution and future trend of the total stock of vehicles (classified
by types according to diverse criteria), in order to derive statistical predictions of future behaviour,
in the medium and long term, based on the corresponding stochastic models statistically fitted to
real trend data.

Greenman [8] proposed a random modelling of the car stock in Japan and the U.K.x, in terms of
income and other effects, although this technique is not considered to be derived from stochastic
modelling based on stochastic diffusion processes.

1.2. Modelling the stock of vehicles by means of stochastic diffusion models: background and
goals

In recent decades, stochastic processes, and especially those of a diffusion type, have been subjected
to in-depth theoretical study and used for the modelling and statistical prediction of stochastic
variables that evolve in time. These studies have been applied to diverse areas such as economics
and finance, physics, biology, industry and business. Lognormal, logistic, Bass, CIR and Gompertz
diffusion processes, for example, have been used for this purpose.

For example, various real problems in the energy sector have been modelled by means of
stochastic diffusion processes. Skiadas and Giovanis [9] and Giovanis and Skiadas [10] studied
electricity consumption in Greece and the U.S.A., while the consumption of electricity and of
natural gas has been examined in Gutiérrez et al. [11, 12].

One of the questions that has aroused greatest interest about these stochastic models, and one
that has been the object of numerous studies in recent years, is that of statistical estimation and
inference. If these are absent, then the corresponding diffusion process cannot be statistically fitted
to the data series observed concerning the real phenomena under study. Such estimation, in general,
is not direct, except in simple cases, and one possible methodological approach to deal with it
would be based upon the maximum likelihood (ML) method. This, however, has the drawback that
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388 R. GUTIÉRREZ, R. GUTIÉRREZ-SÁNCHEZ AND A. NAFIDI

the transition densities are rarely known, and it is not usually possible to express the likelihood
function in an explicit way. Various methods addressing the question of statistical inference have
been developed recently, and several papers have been published on the topic, including those by
Bibby and Sorensen [13], Ait-Sahalia [14] and Singer [15], without overlooking the wide-ranging
review of results presented by Prakasa Rao [16], who provides a lengthy list of references on the
subject.

In the present study, the basis adopted to carry out the modelling is the Gompertz diffusion
process.

Gompertz [17] proposed the Gompertz deterministic model (or Gompertz curve), which has
been applied successfully in many fields, especially in the study of populational growth phenomena
in general, such as cases of tumor growth and the diffusion of new technologies or of innovations.
Taking the s-shaped Gompertz slope as a basis, various authors have created stochastic versions
of the Gompertz deterministic model. Concretely, a homogeneous Gompertz diffusion process has
been established, obtained by adding an infinitesimal variance (white noise fluctuations) to the
Gompertz deterministic model. See, for example, Ricciardi [18] and Dennis and Patil [19].

The principal aim of the present study is to demonstrate the potential of the Gompertz homo-
geneous diffusion process in the stochastic modelling of real cases in the automobile industry.
In consequence, we decided to present this model directly, explaining its probabilistic properties
for forecasting and for analysing the trends present within applications. In fact, we made a direct
examination of the Gompertz model (that is not included in any general class of diffusions), defined
from the standpoint of the corresponding Kolmogorov equations and we obtain the probability
transition density function (ptdf) and the trend functions (non-conditioned and conditioned) of
the process, and on the other, that we obtain its stationary distribution and that of the asymptotic
moments. Moreover, we study statistical estimation by means of the ML method, on the basis of
discrete sampling of the process, to obtain the estimators of the process parameters. Following this,
the statistical inference is completed by establishing the approximate and asymptotic confidence
intervals for the drift parameters of the process, also producing ML estimates of the trend func-
tions (both conditional and non-conditional). Alternatively, the homogeneous Gompertz process
could be considered via a ‘linearization’ derived from the general theory of reducible SDEs (see,
for example, Kloeden and Platen [20]). This theory is known to provide methods for reducing a
nonlinear autonomous SDE in Yt to a linear autonomous SDE in Xt by means of a time-dependent
transformation (and in particular cases by a time-independent transformation). This methodology
has been implemented in the case of many specific diffusions, such as the stochastic Bass inno-
vation diffusion model [9], Gompertz homogeneous univariate diffusions, Ornstein–Uhlenbeck
diffusions and Malthusian diffusions (see, for example, Skiadas et al. [21]), among others. In this
respect, therefore, the basic probabilistic results for the Gompertz homogeneous univariate process
examined in the present study, as well as those corresponding to certain more general versions of
this process, can be obtained by particularizing the general results given in the above-cited theory
of reducible SDEs.

With respect to previous approaches to stochastic homogeneous Gompertz diffusion process
(SHGDP), for example, let us note that in Gutiérrez et al. [22] and in Ferrante et al. [23], this process
was defined and studied as a solution to Ito’s SDE, with the parameters of the drift coefficient being
estimated by ML based on continuous sampling of the process, while the diffusion coefficient
parameter was determined by approximation methods. Another version of the Gompertz process
is the non-homogeneous Gompertz process, which was studied and implemented in Gutiérrez
et al. [24], and where the Gompertz process was considered with exogenous factors (time-dependent
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functions that affect the drift). Among other cases, this has been applied to data on new housing
prices in Spain, taking as exogenous factors the (GDP), the retail price index and the long-
term interest rate. Ferrante et al. [25] considered a non-homogeneous Gompertz process with an
exogenous factor that was the sum of two exponential functions. Albano and Giorno [26] examined
a Gompertz process with a logarithmic exogenous factor. Finally, Patanarapeelert et al. [27] studied
a Gompertz model in relation to the study of Markov processes with delays, making reference
to Gutiérrez et al. [24] with respect to statistical processing. Also Meade and Islam [28] cited
the statistic methodology study in Gutiérrez et al. [11]. Finally, Gutiérrez et al. [29] introduced a
Gompertz model with a threshold parameter. In all the above-referenced papers, the homogeneous
process in question was studied from the standpoint of the corresponding Ito SDE, while the present
study is fundamentally based on the Kolmogorov equations with their ptdf. Another difference is
that none of the above studies tackles the problem of the stationary distribution of the process;
nor do they propose confidence intervals or regions, which are necessary to be able to make a
statistical analysis of the predictions obtained.

1.3. Aims and organization of the study

In our framework, as set out in Sections 1.1 and 1.2 above, the specific aim of this study is to
model the evolution of diverse total stocks of vehicles (overall, cars, petrol-fuelled cars and diesel-
fuelled cars), using stochastic diffusion models with a statistical method to fit the trends, which
are subsequently employed as a statistical instrument for short- and medium-term predictions.
This methodology provides an alternative to other, classical approaches (econometric models, or
chronological series, among others). The proposed modelling procedure is a lognormal–Gompertz-
type based on homogeneous Gompertz diffusion processes.

The paper is organized as follows: in Section 2 we consider the homogeneous Gompertz diffusion
process in its probabilistic aspects, complementing the results of earlier studies. The process is
examined from the perspective of its Kolmogorov equations, on the basis of which we are able to
establish the ptdf, the trend functions (both non-conditional and conditional) of the process, and the
stationary distribution. Subsequently, the parameters are estimated using the maximum likelihood
method on the basis of a scheme of discrete sampling in time. We then determine the approximate
and asymptotic confidence intervals of the drift parameters, and from these, deduce those of the
trend functions. In Section 3, the study of stochastic homogeneous lognormal diffusion process
(SHLDP) is derived from SHGDP. Finally, in Section 4, the methodology examined in this study
is applied to real data, namely the evolution of the stock of vehicles in Spain, classified by type of
vehicle and by the fuel used (petrol or diesel), statistically fitting Gompertz models on the basis
of observations for the period 1978–2005.

2. THE MODEL AND ITS CHARACTERISTICS

2.1. The ptdf and moment of the SHGDP

SHGDP is defined as a diffusion process {Xt , t0�t�T } on (0,∞) with infinitesimal moments
given by (see Ricciardi [30])

A1(x)=�x−�x log(x), A2(x)=�2x2 (1)
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where �>0, �, and � are real constants. In studies of population and cell growth, the parameter
� is the intrinsic growth rate and � is the deceleration factor.

We denote the pdf of the process by f (y, t | x,s), as both the boundaries 0 and ∞ are natural
(for �>0), and then f is the unique solution to the following equations, known as the forward
Fokker Planck and the backward Kolmogorov expressions:

� f (y, t | x,s)
�t

= − �
�x

[A(y, t) f (y, t | x,s)]+ 1

2

�2

�x2
[A2(y, t) f (y, t | x,s)]

� f (y, t | x,s)
�s

= −A1(x, t)
� f (y, t | x,s)

�x
− 1

2
A2(x, t)

�2 f (y, t | x,s)
�x2

with the delta type initial condition limt→s f (y, t | x,s)=�(y−x).
Alternatively, the above-defined process can be considered as the solution of Itô’s stochastic

differential equation (SDE) (see for example Ferrante et al. [23]; Gutiérrez et al. [11])
dXt = (�Xt −�Xt log(Xt ))dt+�Xt dWt

Xt0 = xt0 >0, t ∈[t0,T ]
(2)

where Wt is a one-dimensional standard Wiener process.
We can show that analytic expression of the process is

x(t) = exp

(
e−�(t−t0) log(xt0)+

�−�2/2

�
(1−e−�(t−t0))

)

×exp

([
�2

2�
(1−e−2�(t−t0))

]−1/2

z

)
with z�N(0,1) (3)

Note that when �=0, the SHLDP is obtain as a particular case of SHGDP.
The common solution to the Fokker Planck and Kolmogorov equations can be obtained using

Ricciardi’s theorem (see Ricciardi [18]) for the transformation of the diffusion process into the
Wiener process. The infinitesimal moments equation (1) verifies the conditions of the cited theorem;
therefore such a transform exists and has the following form:

�(x, t) = e�t

�
log(x)− �−�2/2

�

∫ t

e�� d�

�(t) =
∫ t

e2�� d�

From the above, the pdf for the considered process is

f (y, t | x,s)= 1

y
[2��2�2(s, t)]−1/2 exp

(
−[log(y)−	(s, t, x)]2

2�2�2(s, t)

)
(4)
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This function is the density function of the one-dimensional lognormal distribution:
�1(	(s, t, x),�2�2(s, t)) where 	(s, t, x) and �(s, t) are given respectively by

	(s, t, x) = e−�(t−s) log(x)+ �−�2/2

�
(1−e−�(t−s))

�2(s, t) = 1

2�
(1−e−2�(t−s))

Taking into account the random variable Xt | Xs = xs has lognormal distribution
�1(	(s, t, xs),�2�

2(s, t)), and bearing in mind the properties of this distribution, the r th conditional
moment of the SHGDP is given by

E(Xr
t /Xs = xs) = exp{re−�(t−s) log(xs)}exp

{
r�

�
(1−e−�(t−s))

}

×exp

{
r�2

4�
(1−e−�(t−s))[r(1+e−�(t−s))−2]

}
from which, the conditional trend function leads us to

E(Xt/Xs = xs)=exp

{
e−�(t−s) log(xs)+ �−�2/2

�
(1−e−�(t−s))+ �2

4�
(1−e−2�(t−s))

}
(5)

Assuming the initial condition P(Xt1 = xt1)=1, the trend function of the process is

E(Xt )=exp

{
e−�(t−t1) log(xt1)+

�−�2/2

�
(1−e−�(t−t1))+ �2

4�
(1−e−2�(t−t1))

}
(6)

2.2. Stationary distribution

We shall now determine the stationary distribution of the process, the density function and the
asymptotic moments. In general (see Nobile and Ricciardi [31]) the density function of a stationary
distribution, fS(x), in a diffusion can be expressed, under given conditions that satisfy the process,
as follows:

fS(x)= c

A2(x)
exp

[
2
∫ x

z

A1(y)

A2(y)
dy

]
where z is an arbitrary point in the interval ]0,+∞[, and c is a constant to be determined by the
following normalization condition:

c=
[∫ +∞

0

1

A2(x)
exp

(
2
∫ x

z

A1(y)

A2(y)
dy

)
dx

]−1

By applying these results, we can deduce that for �>0, the density function of the stationary
distribution of the process exists and has the following form:

fS(x)=
[
��2

�

]−1/2

x−1 exp

(
− �

�2

[
log(x)− �−�2/2

�

]2)
(7)
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and that this is also the density of a lognormal distribution �1((�−�2/2)/�;�2/2�). Therefore,
the k order asymptotic moment of the process (for �>0) is given by

E[Xk(∞)]=exp

(
k

�

[
�− �2(2−k)

4

])
The asymptotic trend function of the process is, for �>0

E[X (∞)]=exp

(
�

�
− �2

4�

)
(8)

It can be seen that the limit of the trend function in Equation (5) (when t tends to ∞) coincides
with the asymptotic trend function in Equation (8).

2.3. Statistical inference

The problem of estimating the parameters of this process has been studied by Ferrante et al. [23]
and by Gutiérrez et al. [11], applying the ML method on the basis of continuous sampling to
estimate the drift parameters (� and �), while the parameter of the diffusion coefficient � is obtained
by means of the quadratic variation associated with the process in Ferrante et al. [23] and by an
extension of the procedure reported by Chesney and Elliot [32], in turn based on the SDE approach
that characterizes the process in Gutiérrez et al. [11].

In the present study, as the densities of the ptdf of the process are known (the distribution is
lognormal), we can constitute the likelihood function corresponding to the process (the product of
the ptdf) via discrete sampling of the process and estimating all its parameters by ML, expressing
the latter in vector form in order to facilitate the computation when the model is to be applied to
real data.

The ML method for parameter estimation was chosen for two main reasons: first, because
of its good computational behaviour in the Gompertz model, particularly when this is based on
equally-spaced discrete sampling (as in the real case analysed in Section 4). Second, and very
importantly, because of its well-known good behaviour with respect to asymptotic situations (for
example, asymptotic distributions of estimators, with both discrete and continuous sampling).

2.3.1. Likelihood estimation. The drift parameter � and � and the diffusion coefficient � of
the process are estimated by means of the ML method using discrete sampling. Thus, we
consider a discrete sampling of the process xt1, xt2, . . . , xtn in times t1, t2, . . . , tn . Furthermore,
we assume that the time lag between consecutive observations is one (i.e. ti − ti−1=1, for
i=2, . . . ,n). Henceforth, the abbreviation xi ≡ xti will be used. In addition by assuming an initial
distribution of P[X (t1)= x1]=1, the associated likelihood function can be obtained from Equa-
tion (4) by the following expression:

L(x1, . . . , xn,�,�,�2)=
n∏
j=2

f (x j , t j | x j−1, t j−1)

As mentioned above, in order to facilitate the computation of the ML estimators and to express
them in a simplified form, we shall state the likelihood function in a vector form, considering
the following transformation of the sample used: v1= x1, vi,� =�−1

� (log(xi )−e−� log(xi−1)), for
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i=2, . . . ,n, denoting V� =(v2,�, . . . ,vn,�)
′. Thus, in terms of V�, the likelihood function is

expressed as follows:

LV�(a,�,�2)=[2��2�2�]−(n−1)/2 exp

(
− 1

2�2
(V�−
�aU)′(V�−
�aU)

)
where a=�−�2/2, 
� =�−1

� (1−e−�)/�, �� =�(ti−1, ti ) and U=(1, . . . ,1)′ is a vector of the order
(n−1).

By differentiating the log-likelihood function with respect to a and �2, we obtain the following
equations:

â
�U
′U=U′V�

(n−1)�̂2 = (V�− â
�U)′(V�− â
�U)

The third likelihood equation is obtained by differentiating the log-likelihood function with
respect to � and by using the effect that V� =�−1

� (Jx −e−�Ix ) with Jx =(log(x2), . . . , log(xn))′ and
Ix =(log(x1), . . . , log(xn−1))

′. After various operations, we have

I′x (V�− â
�U)=0

Taking into account that U′U=n−1 and after algebraic rearrangement (not shown), the ML
estimators of a and �2 are

(n−1)â= 
−1
� U′V� (9)

(n−1)�̂2 =V′
�HUV� (10)

The ML estimator of � is given by

�̂ = log

(
I′xHUIx
I′xHUJx

)
(11)

where HU= In−1−(1/(n−1))UU′ is idempotent and a symmetric matrix.

2.3.2. Asymptotic normality of drift parameters. Let X be the random variable with a density
function fS(x) in Equation (7); then log(X) is distributed as a normal distribution N1((�−
�2/2)/�;�2/2�). If �>0, the process under consideration has ergodic properties, and for �∗ =
(�,�)∈(�1,�2)×(�1,�2), with �1>0, we have

L�(
√
T (�̂−�))→N2(0,I−1(�)) when T →∞ (12)

where

I(�)=E�

(
Ȧ1(X) Ȧ∗

1(X)

A2(X)

)
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and

Ȧ1(x)=
(

�A1(x,�)

��
,
�A1(x,�)

��

)∗

Then, we have

I(�)= 1

�2
E�

⎛⎝ 1 − log(X)

− log(X) log2(X)

⎞⎠= 1

�2

⎛⎜⎜⎜⎜⎝
1 −�−�2/2

�

−�−�2/2

�

�2

2�
+ (�−�2/2)2

�2

⎞⎟⎟⎟⎟⎠ (13)

and the inverse is

I−1(�)=
⎛⎜⎝�2+ 2

�

(
�− �2

2

)2

2�−�2

2�−�2 2�

⎞⎟⎠ (14)

An approximated and asymptotic confidence region of � and an approximated and asymptotic
marginal confidence interval of � and � can be obtained by substitution of Equations (12) and (14).
The above mentioned region is given, for a large T , by

P[T (�− �̂)∗Î(�)(�− �̂)��22,
]=1−
 (15)

where Î(�) is obtained by replacing the parameters by their estimators in the expression
Equation (13) and �22,
 is the upper 100
% points of the chi-squared distribution with two degrees
of freedom.

The 
% confidence (marginal) intervals for the parameters � and � are given, for a large T , by

P

⎛⎝�∈
⎡⎣�̂±�


(
�̂�̂2+2(�̂− �̂2/2)2

�̂T

)1/2
⎤⎦⎞⎠= 1−
 (16)

P(�∈[�̂±�


√
2�̂/T ]) = 1−
 (17)

where �
 is the 100
% points of the normal standard distribution.
In Equations (15), (16) and (17) we have assumed that � is known with a value �= �̂.

Remark 1
By Zehna’s theorem, the estimated conditional trend (ECT) and the estimated trend (ET) functions
can be obtained from Equations (5) and (6) in the case of SHGDP by replacing the parameters by
their estimators. Furthermore, we can obtain an approximated and asymptotic confidence interval
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of the ETF and ECTF of the SHGDP by means of the approximated and asymptotic confidence
interval of the parameters given by Equations (16) and (17).

3. STOCHASTIC HOMOGENEOUS LOGNORMAL DIFFUSION PROCESS

The SHGDP discussed in this paper, together with the non-homogeneous version discussed by
Gutiérrez et al. [33], is an extension of the lognormal diffusion models that have been studied in
depth and applied, see Gutiérrez et al. [34–37]. Specifically (see, for example, paragraph 2.1), the
SHGDP contains as a particular limit case that of the one-dimensional homogeneous lognormal
process. In using the expression ‘limit case’, we understand the succession of Gompertz processes,
this succession being given in terms of a succession of values of the parameter � tending to 0, to
converge to the lognormal process. Indeed, it is possible to prove the convergence, for example
in distribution, of a succession of Gompertz processes (a succession in �, with �→0)) to the
lognormal process. Nevertheless, this question goes beyond the aims of the present study, which is
why its proof has not been included. Our aim, by including in Section 3 the lognormal case, which
in fact is, technically coincident with that of a Gompertz process with �=0 is to demonstrate the
possibility of fitting a lognormal model to the variables being studied in the real case analysed in
Section 4. Furthermore, we wish to show that the corresponding fits can be discarded in favour
of the Gompertz process � 	=0. In addition, it is evident that Gompertz transition densities, as
deterministic functions that are dependent on � when �→0, tend to the transition density of the
lognormal case. It is interesting to observe that although this process is, technically, a special
case, it presents certain peculiarities that differ greatly from its Gompertz extension. For example,
it does not possess a stationary distribution, but rather presents an increasing exponential trend
function that does not weaken.

As stated above, when �→0, we obtain the SHLDP, and then the trend functions and the
estimators of the parameters are deduced from those of the Gompertz function, via the limit
�→0. Thus, the conditional trend function obtained from Equation (5) has the following
form:

E(Xt/Xs = xs)= xs exp(�(t−s)) (18)

Taking the limit when �→0 in Equation (6), with the initial condition P(Xt1 = xt1)=1, the
trend function of the SHLDP is

E(Xt )= xt1 exp(�(t− t1)) (19)

Then, from Equations (9) and (10), we obtain the estimators of the parameters of the SHLDP,
and then by denoting V=Jx −Ix , these estimators are expressed as follows:

(n−1)â=U′V (20)

(n−1)�̂2 =V′HUV (21)

On the contrary, the stationary distribution and the approximated confidence interval cannot
be deduced from the Gompertz functions, but in this case it is possible to determine the exact
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confidence interval of the parameter, as the distribution of the estimators are known; in the present
case, they are

â∼N1(a;�2/n−1) and (n−1)�̂2/�2∼�2n−2

(1−�)% confidence intervals for a and �2 are given respectively by

[â− �̂·t
/2,n−1/
√
n−1, â+ �̂·t
/2,n−1/

√
n−1] (22)

[(n−1)�̂2/�2
/2,n−1, (n−1)�̂2/�21−
/2,n−1] (23)

where �2
,n and t
,n are the upper 100
% points of the chi-squared distribution and student distri-
bution respectively with n degrees of freedom.

Remark 2
By Zehna’s theorem, the ECT and the ET functions of the SHLDP can be obtained from Equations
(18) and (19) by replacing the parameters by their estimators. In addition the exact confidence
interval of the ETF and ECTF of the SHLDP by means of the confidence interval of the parameters
is given by Equations (22) and (23).

4. APPLICATION TO REAL DATA: THE CASE OF SPAIN

The challenge to be faced, within the EU as a whole, by the automobile industry, as set out in the
Introduction to this paper, is not of the same dimension for all countries or for all manufacturers of
certain types of car. Thus, Spain is a paradigmatic case, characterized by its having conspicuously
failed to fulfill the commitments made on signing the Kyoto protocol, and by its specialization
in the manufacture of mid-upper range vehicles. In this context, an interesting question, among
others, is that of modelling the future trends of various ‘total vehicle stocks’ on the road, classified
by type of fuel utilized (petrol or diesel). This question comprises one of the aims of the application
discussed below.

The benefits of using diesel fuel rather than petrol, in terms of CO2 emissions, seem clearcut
today. Zervas and Lazarou [38], for example, have analysed this question hypothesizing various
future scenarios of the future evolution of the stock of diesel passenger cars in Sweden and in
the EU; a point of technical interest is that they did not use time-series stochastic or econometric
modelling.

In October 2007, the Spanish Government adopted fiscal measures concerning newly-registered
motor vehicles (whether or not manufactured in Spain) concerning the CO2 emissions they produce.
Under the new provisions, those emitting up to 120 g of CO2 would be exempted from the
registration tax; the rate applicable to those producing 121–160 g would be reduced from 7 to
4.75%; for those producing 161–200 g, it would fall from 12 to 9.75%; and finally, for those in
the highest category, emitting over 200 g of CO2, the tax would rise from 12 to 14.75%.

On other hand, these political economic strategies are proposed in Spain, which currently (2007)
has 501 cars per 1000 inhabitants (in comparison to 565, 596 and 501 in Germany, Italy and
France, respectively). This value is expected to rise to 510 by the year 2012.

In this Spanish context, we shall develop the application of the Gompertz modelling described in
Section 2, using the statistical methodology proposed in paragraph 2.3, in order to model evolution
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Table I. Real data (×107).

Years X1(t) X2(t) X3(t) X4(t)

1978 0.8952628 0.653042 0.0152199 0.637822
1979 0.9586752 0.705752 0.0184651 0.687287
1980 1.0192748 0.755651 0.0223368 0.733314
1981 1.0666714 0.794332 0.0273418 0.766990
1982 1.1170404 0.835405 0.0328692 0.802535
1983 1.1628151 0.871407 0.0422526 0.829155
1984 1.1390564 0.887444 0.0534743 0.833969
1985 1.1716339 0.927371 0.0646153 0.862755
1986 1.2284071 0.964344 0.0758191 0.888525
1987 1.3072840 1.021852 0.0871487 0.934703
1988 1.3881323 1.078742 0.0987094 0.980033
1989 1.4870484 1.146772 0.1107089 1.036063
1990 1.5696715 1.199564 0.1220746 1.077489
1991 1.6528396 1.253709 0.1317475 1.121962
1992 1.7347203 1.310228 0.1461618 1.164066
1993 1.7809897 1.344069 0.1602062 1.183863
1994 1.8218924 1.373379 0.1806248 1.192754
1995 1.8847245 1.421225 0.2059126 1.215313
1996 1.9542104 1.475380 0.2391352 1.236245
1997 2.0286408 1.529736 0.2806754 1.249061
1998 2.1306493 1.605005 0.3368847 1.268121
1999 2.2411194 1.684739 0.4044419 1.280297
2000 2.3284215 1.744923 0.4702264 1.274697
2001 2.4249871 1.815088 0.5355145 1.279573
2002 2.5065732 1.873263 0.6003919 1.272871
2003 2.5169452 1.868832 0.6592444 1.209587
2004 2.6432641 1.954191 0.7506821 1.203509
2005 2.7657276 2.025037 0.8434725 1.181565

Table II. Estimation of the parameters and the limits of the 95% confidence intervals.

Variable � lower � � upper � lower � � upper �2

X1(t) 0.01080 0.01175 0.01270 0.21712 0.23713 0.25558 3.21626e−004
X2(t) 0.02304 0.02441 0.02578 0.41552 0.44098 0.46506 1.36022e−004
X3(t) 0.02193 0.02327 0.02460 0.44809 0.47632 0.50298 0.00145
X4(t) 0.07694 0.07941 0.08188 1.26836 1.30976 1.34988 1.95418e−004

trends and to obtain statistical forecasts for diverse ‘stocks of vehicles’. Specifically, in this study
we shall examine the dynamic stochastic variables X1(t), X2(t), X3(t) and X4(t) that represent,
respectively, the ‘total stock of vehicles’, ‘total stock of private cars’, ‘total stock of private cars—
diesel’ and ‘total stock of private cars—petrol’. These variables are considered to be defined for
the continuous time variable t , in which t�0, such that any of them will provide, for each t , the
respective value for total stocks in the year ending at time t . This variable is measured in ‘years’.
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Table III. Fits by using Gompertz ETF (×107).

Years ETF of X1(t) ETF of X2(t) ETF of X3(t) ETF of X4(t)

1978 0.8952628 0.653042 0.0152199 0.637822
1979 0.9356658 0.688806 0.0183134 0.677636
1980 0.9774269 0.725645 0.0219472 0.716710
1981 1.0205714 0.763546 0.0261984 0.754892
1982 1.0651243 0.802495 0.0311529 0.792054
1983 1.1111101 0.842473 0.0369048 0.828091
1984 1.1585534 0.883463 0.0435578 0.862916
1985 1.2074780 0.925444 0.0512250 0.896463
1986 1.2579078 0.968394 0.0600296 0.928686
1987 1.3098659 1.012290 0.0701051 0.959553
1988 1.3633753 1.057106 0.0815956 0.989046
1989 1.4184584 1.102815 0.0946563 1.017161
1990 1.4751371 1.149391 0.1094534 1.043904
1991 1.5334329 1.196805 0.1261642 1.069292
1992 1.5933668 1.245026 0.1449774 1.093350
1993 1.6549594 1.294025 0.1660930 1.116107
1994 1.7182304 1.343768 0.1897219 1.137600
1995 1.7831993 1.394223 0.2160862 1.157869
1996 1.8498848 1.445358 0.2454185 1.176959
1997 1.9183051 1.497137 0.2779618 1.194915
1998 1.9884777 1.549528 0.3139689 1.211785
1999 2.0604195 1.602495 0.3537021 1.227618
2000 2.1341468 1.656003 0.3974323 1.242462
2001 2.2096751 1.710016 0.4454384 1.256366
2002 2.2870194 1.764499 0.4980068 1.2693797

When we refer to ‘total stocks’, this is understood as the total number of vehicles, of the class
in question, that ‘are in circulation’ during the annual period under consideration, irrespective of
the distance travelled, as these are all potential emitters of CO2.

For these variables, and as is usually the case at the Department of Economics and Industry,
data on real observations are available for calendar years. Specifically, in this study we make use
of observations for the period 1978–2005, these data being obtained from the official statistics
of the Spanish Ministry of Economics (National Transport Yearbook), and can be consulted at
http//www.ine.es. On the basis of these real data, we modelled the above-mentioned dynamic
variables, using SHGDP, which have been described in Section 2. The methodology consisted of
the following steps:

1. We took the data observed for the period 1978–2002, reserving those for 2003–2005 for
later confirmation with the values forecasted using the fitted SHGDP. These data are shown
in Table I. Using these data, which obviously comprise an ‘equally spaced’, ‘discrete time’
sample with a one-year unit interval, we fitted the SHGDP model with the estimation method-
ology described in paragraph 2.3. In particular, following this methodology, and as described
in the Remark 1, we obtained ML estimations for the drift parameters of each diffusion
(i.e. the estimators of the individual parameters � and �) and for the coefficient of diffu-
sion (volatility) � and for the estimated trend functions (ETF and ECTF). The parameters
estimated are shown in Table II.
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Table IV. Fits by using Gompertz ECTF (×107).

Years ECTF of X1(t) ECTF of X2(t) ECTF of X3(t) ECTF of X4(t)

1978 0.8952628 0.6530428 0.0152199 0.637822
1979 0.9356658 0.6888063 0.0183134 0.677636
1980 1.0012036 0.7430869 0.0221253 0.726160
1981 1.0637908 0.7943882 0.0266541 0.771080
1982 1.1127139 0.8341033 0.0324837 0.803814
1983 1.1646796 0.8762252 0.0388949 0.838249
1984 1.2118835 0.9131088 0.0497268 0.863962
1985 1.1873856 0.9295265 0.0626128 0.868607
1986 1.2209754 0.9703732 0.0753478 0.896333
1987 1.2794889 1.0081631 0.0881064 0.921096
1988 1.3607357 1.0668750 0.1009665 0.965338
1989 1.4439585 1.1248820 0.1140516 1.008609
1990 1.5457093 1.1941570 0.1275981 1.061893
1991 1.6306441 1.2478494 0.1403997 1.101149
1992 1.7160907 1.3028637 0.1512742 1.143170
1993 1.8001695 1.3602310 0.1674473 1.182838
1994 1.8476621 1.3945529 0.1831720 1.201453
1995 1.8896350 1.4242636 0.2059808 1.209806
1996 1.9540914 1.4727333 0.2341519 1.230978
1997 2.0253468 1.5275489 0.2710497 1.250597
1998 2.1016425 1.5825215 0.3170302 1.262597
1999 2.2061587 1.6585718 0.3790161 1.280426
2000 2.3192840 1.7390449 0.4532214 1.291807
2001 2.4086419 1.7997288 0.5252200 1.286573
2002 2.5074396 1.8704163 0.5964588 1.291130

2. After having obtained the ETs, we determined the fitted values for the period 1978–2002.
The results obtained from the ETF are shown in Table III and those from ECTF, in Table IV.

3. We then made forecasts for the year 2003–2005, on the basis of the ETF and the ECTF.
First, we applied the asymptotic statistical inference proposed in paragraph 2.3.2, with
the approximations described therein. By these means, we obtained the upper and lower
limits of the 95% confidence intervals for the parameters of the drift parameters of the
process (see Table II). Then, in accordance with the description given in Remark 1, we
obtained the predictions for 2003–2005; for the four models under consideration, see Table V,
which gives the results for the case in which the ETF was used. Note that in the first
three cases, the observed values lie within the 95% confidence region of the ETF, which
confirms the high degree of accuracy of the predictions made. For X4(t), see discussion in
Section 5.

4. It is possible to construct a confidence region of the trajectories of the Gompertz process, based
on the explicit expression of its random variables X (t) and following a known methodology
(see, for example, Katsamaki and Skiadas [39]). In particular, for the fitted Gompertz process
(with the technical parameters replaced by their estimators), the following lines can be
calculated for a confidence of (1−�)%. This estimated region of confidence includes the
one corresponding to the trend function (conditioned or otherwise). With these elements, the
validation methodology used in the present study, based on trend functions, can be completed.
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Table V. Forecasting (2003–2005) using ETF, the limits of confidence regions for ETF and ECTF.

Years Real data ETF lower ETF ETF upper ECTF

X1(t)
2003 2.516945 2.366193 2.596996 2.750818 2.600707
2004 2.643264 2.447211 2.693317 2.857050 2.611343
2005 2.765727 2.530085 2.792019 2.965963 2.740831

X2(t)
2003 1.868832 1.819417 1.929278 1.990181 1.933765
2004 1.954191 1.874733 1.990129 2.053510 1.929301
2005 2.025037 1.930413 2.051360 2.117164 2.015250

X3(t)
2003 0.6592444 0.5554299 0.6639763 0.7662196 0.6718881
2004 0.7506821 0.6180062 0.7411469 0.8570027 0.7361637
2005 0.8434725 0.6860381 0.8251928 0.9559318 0.8357693

X4(t)
2003 1.209587 1.281549 1.300179 1.300457 1.286066
2004 1.203509 1.292921 1.311475 1.311294 1.226894
2005 1.181565 1.303540 1.321995 1.321358 1.221198

Figure 5 shows the behaviour of the estimated trend function with respect to its own region
of confidence and to that of the adjusted process, in the case of X1(t). The same figure also
shows 10 simulated paths of the adjusted process.

5. An important complementary question is that of studying the consistency of the estimators
obtained for the Gompertz homogeneous univariate model, specifically, the behaviour of its
biases and variates when the time is increased, and especially at times ‘previous’ to the
inflection of this Gompertz model. By following the theoretical–practical model (see Biby and
Sorensen [13]), which has also been applied by Gutiérrez et al. [40] in the case of a gamma
diffusion process, it is possible to analyse the above-mentioned question for the adjusted
Gompertz process in the present case. The bias and variance behaviour, in the time interval
considered in the application (1985–2005), which is well before the point of inflection (see
Figure 5), is in accordance with the hypothesis that it decreases with increasing time.

6. We have carried out several studies similar to the one described in this paper, considering,
in fact, the final 10 and 8 data items, but we concluded that the first and forecasts are less
accurate because the sample, in years, is a small one. For this reason we adopted the situation
described in the present paper (i.e. taking the last 3 years).

7. For the variable X4(t), the Gompertz fit was discarded (see Comment 3, Section 5). A
fundamental reason for this rejection is, precisely, the behaviour of the 2004–2005 series, the
values of which decreased after 2003. This real decrease is poorly modelled by the Gompertz
process, which provides slightly rising average ETF values. On the other hand, the ECTF
provides clearly falling values. This clearly demonstrates the utility of the ECTF in our
methodology; in this it is capable of highlighting a poor fit.

8. The lognormal process has been fitted to the variables considered, discarding the validity of
this fit in favour of Gompertz or other models.
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Figure 1. Total stock of vehicles.

Figure 2. Total stock of private car.

Figures 1, 2, 3 and 4 show, respectively for X1(t), X2(t), X3(t) and X4(t) the real data, the
ECT and the ECTF and the confidence ranges calculated for the respective ETF. These graphs
also show the forecasts for 2003–2005.

All the calculations necessary for this application were implemented using MATLAB7.0.1.

5. DISCUSSION AND CONCLUSIONS

• The proposed SHGDP provides a significantly good fit, in statistical terms, to the real evolution
of the total stock of motor vehicles in Spain X1(t), in accordance with real data for the period
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Figure 3. Total stock of private car—diesel.

Figure 4. Total stock of private car—petrol.

1978–2002. Figure 1 and Tables II and III show that the ETF and ECTF, estimated using
the methodology described in paragraph 2.3, provides a good description of the evolution of
vehicles in Spain. The forecasts for 2003, 2004 and 2005, based on the extrapolation of the
ETF fitted to the data for the period 1978–2002 (see Table V) are particularly good statistically,
as the real data for the period 2003–2005 lie within the confidence interval (1−�=95%) of
the ETF.

• This conclusion is also valid, in every respect, for the total stock of private cars X2(t) and
the subsector of diesel-fuelled cars X3(t). The fitted results obtained using the ETF and the
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Figure 5. ETF, simulated paths and confidence lines of X1(t).

ECTF (Figures 2, 3 and Tables II and III), reveal a rising Gompertz trend. The estimate values
of � coefficients (Equation 1) in the Gompertz model are 0.02441 and 0.02327, respectively,
both values being moderately high. Note that as these coefficients rise or fall (as � tends to
0), the Gompertz model ceases to be valid. In the second case, as it tends to 0 (see Section
3), the Gompertz model becomes a lognormal model. Therefore, � values that are excessively
high or low are indicative of the non-validity of the Gompertz trend.

• With respect to the subsector of petrol-fuelled cars in Spain (variable X4(t)), the conclusion
we reach is that the Gompertz fit is inadequate, mainly due to a significant variation in
the trend beginning in 2002. Thus, a new stochastic model based on a diffusion process
of a different type from the Gompertz–lognormal model should be considered. This would
probably lead to a gamma-type diffusion model such as that recently described by Gutiérrez
et al. [40].

• In this case, the � coefficient is very high in relative terms. The � for petrol-driven cars is
0.07941 and that for diesel is 0.02327; the first named, thus, is 3.41 times greater than the
second. In fact, the behaviour of the � in the SDE (Equation (2)) reveals significant trend
changes in the evolution of the processes in question. Indirectly, this is a further advantage
to the proposed method for studying trends versus those based on econometric models or on
time series.

• The Gompertz model that we successfully implement in this study can be extended, moreover,
to a non-homogeneous version, in cases 1 and 2 above, including exogenous factors within
the trend (functioning as regressors). This would make it possible to improve, in statistical
terms, the fits obtained in the present study. To do so, we follow the methodology previously
described by the authors and implemented it to address real problems (see Gutiérrez et al.
[40]). This non-homogeneous method would require us to identify the exogenous variables
that affect the stock of motor vehicles in Spain, such as the GDP, retail sales prices, interest
rates, etc.).
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